Rogers–szegö Polynomials and Hall–littlewood Symmetric Functions
نویسنده
چکیده
Here λ denotes a partition, λ its conjugate, and the condition “λ even” (or “λ even”) implies that all parts of λ (or all parts of λ) must be even. Furthermore, sλ(x) = sλ(x1, x2, . . . ) is a Schur function of a finite or infinite number of variables. When x = (x1, . . . , xn) the identities (1.1a)–(1.1c) may be viewed as reciprocals of Weyl denominator formulas; the latter expressing the products n
منابع مشابه
A generalization of Kawanaka’s identity for Hall-Littlewood polynomials and applications
Recently, starting from two infinite summation formulae for Hall-Littlewood polynomials, two of the present authors [7] have generalized a method due to Macdonald [9] to obtain new finite summation formulae for these polynomials. This approach permits them to extend Stembridge’s list of multiple qseries identities of Rogers-Ramanujan type [12]. Conversely these symmetric functions identities ca...
متن کاملHall–littlewood Functions and the A2 Rogers–ramanujan Identities
We prove an identity for Hall–Littlewood symmetric functions labelled by the Lie algebra A2. Through specialization this yields a simple proof of the A2 Rogers–Ramanujan identities of Andrews, Schilling and the author. Nous démontrons une identité pour les functions symétriques de Hall–Littlewood associée à l’algèbre de Lie A2. En spécialisant cette identité, nous obtenons une démonstration sim...
متن کاملCombinatorial Formula for Modified Hall-Littlewood Polynomials
We obtain new combinatorial formulae for modified Hall–Littlewood polynomials, for matrix elements of the transition matrix between the elementary symmetric polynomials and Hall-Littlewood’s ones, and for the number of rational points over the finite field of unipotent partial flag variety. The definitions and examples of generalized mahonian statistic on the set of transport matrices and dual ...
متن کاملAdding ±1 to the Argument of a Hall–littlewood Polynomial
’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o Shifting by ±1 powers sums: pi → pi ± 1 induces a transformation on symmetric functions that we detail in the case of Hall–Littlewood polynomials. By iteration, this gives a description of these polynomials in terms of pl...
متن کاملNew Identities of Hall-Littlewood Polynomials and Rogers-Ramanujan Type
where a = 0 or 1, are among the most famous q-series identities in partitions and combinatorics. Since their discovery the Rogers-Ramanujan identities have been proved and generalized in various ways (see [2, 4, 5, 13] and the references cited there). In [13], by adapting a method of Macdonald for calculating partial fraction expansions of symmetric formal power series, Stembridge gave an unusu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008